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1. 

Vibration of membranes is important in the theory of sound [1]. It is also related to the
property of electromagnetic wave guides [2]. The resulting Helmholtz equation, however,
has very few exact solutions. Thus, a variety of approximate methods has been proposed
for different membrane geometries [3, 4]. Consider a polygonal membrane with a fixed
circular core. This problem has been solved before by Laura et al. [5] in using conformal
mapping and Galerkin approximation. The results for the fundamental frequencies were
displayed graphically.

The purpose of the present paper is two-fold. First, we study in detail the asymptotic
properties where the center core shrinks to a point, i.e., the membrane is ‘‘pinned’’ at the
center. Second, we show that the point match method yields results that differ considerably
from those of Laura et al. [5], especially when the fixed center core is large.

2.     

Consider an annular membrane with outer radius 1 and inner radius o�1. The
characteristic equation is [1]

Y0(k)J0(ko)− J0(k)Y0(ko)=0, (1)

where k is the frequency normalized by length · zdensity/tension per length. Now when
o=0, equation (1) shows the fundamental frequency is the first root of J0(k), or
k= k0 =2·4048. We perturb from this value,

k= k0 + d(o)k1 + o(d(o)), (2)

where d(o):0 as o:0. Thus [6]

Y0(k)=Y0(k0 + dk1 + · · ·)=Y0(k0)− dk1Y1(k0)+ · · ·, (3)

Y0(ko)=
2
p $ln ko

2
+ g%J0(ko)+0(o2), (4)

where g=0·5772. Equation (1) becomes

[Y0(k0)− dk1Y1(k0)+ · · ·]− [J0(k0)− dk1J1(k0)+ · · ·]
2
p $ln o+ln

k0

2
+ g+· · ·%=0. (5)
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Balancing the leading orders, one finds

d(o)=
1

=ln o= (6)

and

k1 =
pY0(k0)
2J1(k0)

. (7)

Thus

k= k0 +
1

=ln o=
pY0(k0)
2J1(k0)

+ · · ·=2·4048+1·54288
1

=ln o=+. . . . (8)

One sees that as the inner radius o shrinks to zero, the frequency is k0, the same as the
unrestrained circular membrane. However, for finite radius, the frequency rises quickly
with o since (dk/do)=o:0 =a. Table 1 shows the comparison of k values as computed from
equation (1) and the asymptotic approximation (8).

The analysis of the annular membrane shows that a pinpoint restraint (e=0) does not
affect the frequency of the circular membrane. We expect this property to hold for
polygonal membranes as well.

3.    

The method of eigenfunction expansion and point match has long been used in solving
linear boundary value problems [7]. Previous applications of this method include that of
Yee and Audeh [8] who considered an eccentric annular membrane. This method will be
used on the polygonal membrane with a circular core. Normalize all lengths by the minimal
outer radius. The solution to the Helmholtz equation in cylindrical co-ordinates is written
as

w(r, u)= s
a

n=0

An cos (Mnu)8n (r), (9)

where M is the number of sides of the (regular) polygon,

8n (r)0YMn (kb)JMn (kr)− JMn (kb)YMn (kr) (10)

and the zero-displacement boundary condition at r= b has been satisfied. We truncate the
series to N+1 terms and select N+1 points on the outer boundary:

uj =
(j−0·5)
(N+1)

p

M
, j=1 to N+1, (11)

T 1

Frequency of the circular membrane pinned at center

o k (exact) Equation (8)

0·1 3·314 3·075
0·01 2·801 2·740
0·001 2·654 2·628
0·0001 2·587 2·572
0·00001 2·548 2·539
0 2·4048 2·4048
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T 2

Convergence of k (M=6)

N b=0·1 b=0·5 b=0·9

5 3·173 5·759 16·28
10 3·173 5·760 16·36
15 3·173 5·760 16·37
20 3·173 5·760 16·37

T 3

The frequency for small b (M=6)

b 1/=ln b= k

0·01 0·2171 2·695
0·001 0·1468 2·556
0·0001 0·1086 2·491
0·00001 0·08086 2·454
0 0 2·32

T 4
Fundamental frequencies k

b/M 4 6 8 a

0 2·221 2·317 2·353 2·405
0·001 2·45 2·56 2·60 2·65
0·1 3·01 3·17 3·23 3·31
0·3 3·88 4·17 4·27 4·41
0·5 5·09 5·76 5·97 6·25
0·7 6·77 8·89 9·63 10·46
0·9 9·51 16·37 21·36 31·41
1 11·86 27·15 47·79 a

where the remaining boundary condition on the polygon is to be satisfied:

0= s
N

n=0

An cos (Mnuj )8n0 1
cos uj1, j=1 to N+1. (12)

The determinant of the coefficients of An is set to zero. A simple root search program yields
the eigenvalue k. The accuracy can be determined by increasing N. Consider, for example,
the hexagonal membrane (M=6). Table 2 shows that convergence occurs when N is about
15.

Guided by the analysis of the annular membrane, values of k versus 1/=ln b= were
computed and are shown in Table 3.

Extrapolating to zero, one finds k0 =2·32 for b=0 which is close to the value of 2·317
for the simply connected hexagonal membrane obtained by Conway [9]. The slope or value
of k1 is 1·54.
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Figure 1. The level curves for M=6, b=0·9. Only 1/12 of the domain is shown. Inset shows the full geometry.

In contrast, reference [5] gave a value of 2·7852 for b=0 which is 20% higher. The
graphs of reference [5] also show k=3·25 for b=0·1, k=5·6 for b=0·5, and k=21·3
for b=0·9, the latter has a difference of 30% as compared with our computed values.

Another test is how well the eigenfunction satisfies the governing equation and the
boundary conditions. Using the k value found, A0 was set to equal 1 in equation (12) and
N equations and unknowns for An were solved. The only place equation (9) is not exact
is on the polygonal boundary. For M=6, N=15 and b=0·9, the maximum error in w
was found to be less than 1%. Figure 1 shows the detailed level curves.

Instead of a graph, our results are tabulated for ease of possible comparison with those
of other researchers (Table 4).

For b=0, the k= k0 values for M=4, a are from exact theory, while those of M=6,
8 agree with point match [9] and conformal mapping [10]. For b1 0, one can use the
asymptotic formula k= k0 + k1/=ln b=, where k1 are all about 1·54. The M=a column is
the value for the annular membrane obtained from equation (1). Also note for b=1 (inner
circle touching outer polygon) the value of k is finite for finite M, since the corner pieces
have non-zero area.
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4. 

For certain problems the point-match method may not converge [11]. But for the
problems where convergence does occur, the method is efficient and accurate, as
demonstrated in this paper. It also yields detailed field profiles. The fundamental frequency
of a polygonal membrane with a circular core is found successfully for all ranges of the
core radius ratio b. Our results, however, differ from those of Laura et al. [5] for both
large and small values of b.

The singular nature of the effect of a point constraint on a vibrating membrane is noted.
If the constraint size is infinitesimally small, the frequency is surprisingly the same as the
unconstrained membrane. But for any finite increase in constraint size, the frequency
increases very rapidly at first, then more slowly.



1. L R 1945 The Theory of Sound, Volume 1. New York: Dover, second edition. See
Chapter 9.

2. R. F. H 1961 Time Harmonic Electromagnetic Fields. New York: McGraw-Hill. See
Chapters 4, 5.

3. J. M 1975 The Shock and Vibration Digest 7, 75–88. A review of approximate methods
for determining the vibrational modes of membranes.

4. F. L. N 1974 IEEE Transactions MMT 22, 322–329. Tabulation of methods for the numerical
solution of the hollow waveguide problem.

5. P. A. L, E. R and M. J. M 1972 Journal of Sound and Vibration 20, 27–38.
On the analysis of waveguides of doubly-connected cross-section by the method of conformal
mapping.

6. N. W. ML 1955 Bessel Functions. London: Oxford, second edition. See Chapter 2.
7. J. A. K 1987 Solid Mechanics Archives 12, 187–231. Review of application of boundary

collocation methods in mechanics of continuous media.
8. H. Y. Y and N. F. A 1966 IEEE Transactions MTT-14, 487–493. Cutoff frequencies of

eccentric waveguides.
9. H. D. C 1961 Journal of Applied Mechanics 28, 288–291. The bending, buckling and

flexural vibration of simply supported polygonal plates by point-matching.
10. P. A. L 1967 Journal of Acoustical Society of America 42, 21–26. Calculation of eigenvalues

for uniform fluid waveguides with complicated cross-sections.
11. E. M. S 1966 Journal of Heat Transfer 88, 182. Discussion.


